Minimum distance of Hermitian two-point codes

نویسنده

  • Seungkook Park
چکیده

We prove a formula for the minimum distance of two-point codes on a Hermitian curve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

A Generalized Floor Bound for the Minimum Distance of Geometric Goppa Codes and Its Application to Two-point Codes

We prove a new bound for the minimum distance of geometric Goppa codes that generalizes two previous improved bounds. We include examples of the bound to one and two point codes over both the Suzuki and Hermitian curves.

متن کامل

On the minimum distance and the minimum weight of Goppa codes from a quotient of the Hermitian curve

In this paper we study evaluation codes arising from plane quotients of the Hermitian curve, defined by affine equations of the form yq + y = xm, q being a prime power and m a positive integer which divides q+ 1. The dual minimum distance and minimum weight of such codes are studied from a geometric point of view. In many cases we completely describe the minimum-weight codewords of their dual c...

متن کامل

Quantum Codes from Two-Point Divisors on Hermitian and Suzuki Curves

Sarvepalli and Klappenecker showed how to use classical one-point codes on the Hermitian curve to construct symmetric quantum codes. For the said curve, Homma and Kim determined the parameters of a larger family of codes, the two-point codes. For the Suzuki curve, the bound due to Duursma and Kirov gave the exact minimum distance of Suzuki two-point codes over F8 and F32. Of more recent develop...

متن کامل

The dual geometry of Hermitian two-point codes

In this paper we study the algebraic geometry of any two-point code on the Hermitian curve and reveal the purely geometric nature of their dual minimum distance. We describe the minimum-weight codewords of many of their dual codes through an explicit geometric characterization of their supports. In particular, we show that they appear as sets of collinear points in many cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2010